

#### Performance Evaluation of Computer Systems and Networks

# Multiprogrammed Server - Project 11 -

Mauro Abozzi Stefano Cicero Matteo Luciani Brunini Simone Tavoletta

MSc degree in Computer Engineering a.a. 2016-2017



### **System Overview**

Multiprogrammed server which manages N different clients





# **System Overview**

After processing has occured with probability:

- . p1 → Transaction terminated
- . p2  $\rightarrow$  disk access is required
- . p3 = 1-p1-p2 → remote query is issued





### **OMNeT++ Model**

Queuing\_Network





# **Experiment Design**

Scenarios (service time mean in seconds)

- 1. Processor = Disk = Query  $\rightarrow$  (0.1 = 0.1 = 0.1)
- 2. Processor << Disk << Query  $\rightarrow$  (0.01 << 0.1 << 1.0)
- 3. Query << Processor << Disk  $\rightarrow$  (0.01 << 0.1 << 1.0)
- 4. Disk << Query << Processor  $\rightarrow$  (0.01 << 0.1 << 1.0)

#### Cases

- A. p1=70%, p2=20%, p3=10%
- B. p1=10%, p2=20%, p3=70%
- C. p1=10%, p2=70%, p3=20%
- D. p1=33%, p2=33%, p3=34%



# **Experiment Design**

Warm-up estimation:

 $N = N_{max} = 20$  clients

Scenario 4 Case C (worst case)

Warm-up = 800s Simulation-time = 4800s





### **Performance Analysis**

#### Throughput

 $1-\alpha = 0.99$  n = 10Case A - p1=70% p2=20% p3=10%





#Clients



### **Performance Analysis**

#### **Response Time**

 $1-\alpha = 0.99$  n = 10Case A - p1=70% p2=20% p3=10%







### **Performance Analysis**

#### **Utilization rate**

$$1-\alpha = 0.99$$
  $n = 10$   
Case A - p1=70% p2=20% p3=10%





# Conclusion

- Scenario 1 shows better performance compared to all the others because the system is well balanced and the service time means are small enough
- ✓ Scenario 1 represents all the cases in which the three components have the same order of magnitude with respect to the service time means
- If probabilities are unknown, to get an optimal performance, select the speed of the devices by looking at the quickest one
- ✓ Otherwise, update the bottleneck and put also the cpu to the same speed
- ✓ Generally, the processor must not be slower than the other components