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Introduction



Motivations

Computer networks changed the paradigm in which people
perform some of their daily duties and operations:

* Home banking e E-commerce

* \oice over IP (VolP) e Video streaming

* Internet of Things (loT) °c ...

Due to advancement in Internet technologies and the
concomitant rise in the number of network attacks, network
intrusion detection has become a significant research issue.
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Intrusion or threat

Deliberate and unauthorized attempt to:
e access information
e manipulate information

e render a system unreliable or unusable
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IDSs - Intrusion Detection
Systems

e Monitor and analyze user, system and network activities

e Configure systems for generation of reports of possible
vulnerabilities

e Assess system and file integrity
e Recognize patterns of typical attacks

e Analyze abnormal activity

e [rack user policy violation
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IDSs classification

Deployment:
* host-based IDS (HIDS)

e network-based IDS (NIDS)

Detection mechanism:

* misuse (signature)-based

e anomaly-based

* hybrid
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ANIDS based on GA
and Fuzzy Logic



Data preprocessing

Bytes per Packets
Second per Second
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System Architecture

ANOMALY

SCORE
TIMESTAMP ANOMALY OUTCOME

e PREDICTOR SCORE A
CALCULATOR

THRESHOLD

MONITORED GENERAL
VALUE THRESHOLD

HISTORICAL
DATA

DSNSF (Digital Signature of Network Segment using Flow Analysis)

k = number of features
TIMESTAMP = day of the week, hour, minute
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Predictor

DSNSF
Genetic Algorithm

SAMPLES
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Threshold Calculator

THRESHOLD
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Anomaly Score Calculator

Xk Monitored value
Example X, =35¢,=2 A
10 X Predicted value (DSNSF)
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Decision Maker

YES ANOMALOUS

NO NORMAL
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UGR’16 Dataset



UGR’16: Dataset Capture

Feature Calibration Test
Capture start 10:47h 03/18/2016 13:38h 07/27/2016
Capture end 18:27h 06/26/2016 09:27h 08/29/2016
Attacks start N/A 00:00h 07/28/2016
Attacks end N/A 12:00h 08/09/2016

Number of files 17 6
Size (compressed) 181GB 55GB
# Connection ~ 13000M ~ 3900M
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Training Set Composition
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Test Set Composition
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ANIDS Improvements



Changes and Check List

e Replaced genetic algorithm with mean value

e Removed features “byte per second” and “packet per
second”

e Checked effectiveness of entropy features

e Added features “flag entropy” and “number of SMTP
flows”

e Checked features values distribution
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Performance
Evaluation



Scenarios

Training Set Test Set

Scenario 1 Original training set Original test set

Test set without “anomaly-

Scenario 2 Original training set sshscan”, “anomaly-udpscan’,
“anomaly-spam” flows

Scenario 3 Original training set Original training set

Training set without

Scenario 4
anomalous flows

Original test set
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Metrics

e Confusion matrix
e Receiver Operating Characteristics (ROC) curve

e ROC Area Under the Curve (AUC)

e Execution time
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Comparison Systems

e kNN (k Nearest Neighbor)
e SVM (Support Vector Machine)
e Naive Bayes

e | ogistic Regression

e LSTM Systems
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AUC Score - Scenario 1
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Confusion Matrix - Scenario 1
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Execution Time - Scenario 1
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AUC Score - Scenario 2
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Confusion Matrix - Scenario 2
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AUC Score - Scenario 3 vs
Scenario 1
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AUC Score - Scenario 4 vs
Scenario 1

0,75

0,5 Lucky

0,25

Mean Fuzzy LSTM Fuzzy LSTM MF Fuzzy LSTM PD Fuzzy
B Scenario 4 B Scenario 1

UNIVERSITA DI P1SA



Conclusions

e Analysis, development, improvement and evaluation of a new
ANIDS based on soft computing techniques

* Analysis and preprocessing of a new dataset for ANIDS
evaluation

e kNN reached the best AUC score in Scenario 1, and it is one
of the fastest system evaluated

e |In Scenario 2 LSTM Fuzzy has the highest AUC Score but
Logistic Regression has a better confusion matrix and
execution time

e Mean Fuzzy obtained similar results in different scenarios
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